
LA-UR-17-30438
Approved for public release; distribution is unlimited.

Title: Charliecloud: Unprivileged Containers for User-Defined Software Stacks
in HPC

Author(s): Randles, Timothy C.
Priedhorsky, Reid

Intended for: Supercomputing 2017, 2017-11-13 (Denver, Colorado, United States)

Issued: 2017-11-14

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Charliecloud

Tim Randles
Reid Priedhorsky

November 15, 2017

Unprivileged Containers for User-Defined Software
Stacks in HPC

The next 25 minutes of your life

11/12/17 | 2Los Alamos National Laboratory

1. Why user-defined software stacks will end your suffering

2. But only if you use containers

3. Use Charliecloud and all your wildest dreams will come true

Some people need different software

11/12/17 | 3Los Alamos National Laboratory

Default software stacks are good at specific things.
– in the case of HPC, it’s MPI-based simulation codes

What if your thing is different?
– non-MPI simulations
– data analytics and machine learning
– epic build process

Admins will install software for you.
– BUT only if there’s enough demand
– unusual needs go unmet
– are you crackpot or innovative?

Solution: User-defined software stacks

11/12/17 | 4Los Alamos National Laboratory

BYOS (bring your own software)
– Let users install software of their choice
– ... up to and including a complete Linux distribution
– ... and run this image on compute resources they don’t own.

Why User-Defined Software Stacks (UDSS)?

11/12/17 | 5Los Alamos National Laboratory

Advantages
– software dependencies: numerous, unusual, older, newer, internet ...
– portability of environments: e.g., across dev/test/small/large ...
– consistent environments: validated, standardized, archival ...
– usability

Why User-Defined Software Stacks (UDSS)?

11/13/17 | 6Los Alamos National Laboratory

Advantages
– software dependencies: numerous, unusual, older, newer, internet ...
– portability of environments: e.g., across dev/test/small/large ...
– consistent environments: validated, standardized, archival ...
– usability

Disadvantages (possibly)
– missing functionality: HSN, accelerators, file systems
– performance: many opportunities for overhead

Design goals
1. Standard, reproducible workflow
2. Work well on existing resources
3. Be very simple

Design goals

11/12/17 | 7Los Alamos National Laboratory

1. Standard, reproducible workflow
– in contrast with “tinker ’til it’s ready, then freeze”
– standard ⟹ reduce training/devel costs, increase skill portability
– reproducible ⇒ creation of images is easier & more robust

2. Work well on existing resources
– HPC centers are very good at what they do
– let’s not re-implement and re-optimize

resource management: solved (Slurm, Moab, Torque, PBS, etc.)
file systems: solved (Lustre, Panasas, GPFS)
high-speed interconnect: solved (InfiniBand, OPA)

3. Be very simple
– save costs: development, debugging, security, usability
– UNIX philosophy: “make each program do one thing well”

UDSS Options

11/13/17 | 8Los Alamos National Laboratory

options definition
UDSS shares with host…

pros cons
kernel core

libraries
app

libraries

UDSS Options

11/13/17 | 9Los Alamos National Laboratory

options definition
UDSS shares with host…

pros cons
kernel core

libraries
app

libraries

compile it
yourself

download all your
dependencies and

compile them
yes yes mixed

always
available; in

principle can do
anything

not 1995
anymore; in
practice too

hard

UDSS Options

11/13/17 | 10Los Alamos National Laboratory

options definition
UDSS shares with host…

pros cons
kernel core

libraries
app

libraries

compile it
yourself

download all your
dependencies and

compile them
yes yes mixed

always
available; in

principle can do
anything

not 1995
anymore; in
practice too

hard

virtual
machines

program (software)
that emulates a

computer
(hardware)

no no no
maximum

flexibility and
isolation

too
heavyweight;
HPC is not

cloud

UDSS Options

11/13/17 | 11Los Alamos National Laboratory

options definition
UDSS shares with host…

pros cons
kernel core

libraries
app

libraries

compile it
yourself

download all your
dependencies and

compile them
yes yes mixed

always
available; in

principle can do
anything

not 1995
anymore; in
practice too

hard

virtual
machines

program (software)
that emulates a

computer
(hardware)

no no no
maximum

flexibility and
isolation

too
heavyweight;
HPC is not

cloud

containers isolate UDSS using
kernel mechanisms yes optional optional

easy to
manage; good
performance;
sufficient

flexibility and
isolation

new

UDSS Options

11/13/17 | 12Los Alamos National Laboratory

options definition
UDSS shares with host…

pros cons
kernel core

libraries
app

libraries

compile it
yourself

download all your
dependencies and

compile them
yes yes mixed

always
available; in

principle can do
anything

not 1995
anymore; in
practice too

hard

virtual
machines

program (software)
that emulates a

computer
(hardware)

no no no
maximum

flexibility and
isolation

too
heavyweight;
HPC is not

cloud

containers isolate UDSS using
kernel mechanisms yes optional optional

easy to
manage; good
performance;
sufficient

flexibility and
isolation

new

Container implementations

11/13/17 | 13Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Container implementations

11/13/17 | 14Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

systemd-nspawn [???]
NsJail [???]

Container implementations

11/13/17 | 15Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operations

Container implementations

11/13/17 | 16Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Lightweight
– few features
– given an image, run it

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operations

Container implementations

11/13/17 | 17Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Lightweight
– few features
– given an image, run it

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operationsunshare(1)

systemd-nspawn [???]
NsJail [???]
Charliecloud Lower-cost deployment

Container implementations

11/13/17 | 18Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Lightweight
– few features
– given an image, run it

Conclusion: Lightweight implementations are a better choice
for HPC centers

– most important cloud-like flexibility
– don’t compromise existing tools & strengths of HPC centers

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operationsunshare(1)

systemd-nspawn [???]
NsJail [???]
Charliecloud Lower-cost deployment

Container implementations

11/13/17 | 19Los Alamos National Laboratory

Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Lightweight
– few features
– given an image, run it

Conclusion: Lightweight implementations are a better choice
for HPC centers

– most important cloud-like flexibility
– don’t compromise existing tools & strengths of HPC centers

But … some of those other features are important

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operationsunshare(1)

systemd-nspawn [???]
NsJail [???]
Charliecloud Lower-cost deployment

Container ingredients to mix-n-match

11/13/17 | 20Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

Container ingredients to mix-n-match

11/13/17 | 21Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

2. cgroups
– limit resource consumption per process

3. prctl (PR_SET_NO_NEW_PRIVS)
– prevent execve(2) from increasing privileges

4. seccomp(2)
– filter system calls

5. SELinux, AppArmor, etc.
– various features that change what a process may do

Container ingredients to mix-n-match

11/13/17 | 22Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

2. cgroups
– limit resource consumption per process

3. prctl (PR_SET_NO_NEW_PRIVS)
– prevent execve(2) from increasing privileges

4. seccomp(2)
– filter system calls

5. SELinux, AppArmor, etc.
– various features that change what a process may do

System calls: unshare(2), clone(2), setns(2)

Container ingredients to mix-n-match

11/13/17 | 23Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

2. cgroups
– limit resource consumption per process

3. prctl (PR_SET_NO_NEW_PRIVS)
– prevent execve(2) from increasing privileges

4. seccomp(2)
– filter system calls

5. SELinux, AppArmor, etc.
– various features that change what a process may do

System calls: unshare(2), clone(2), setns(2)

privileged
need root to create, unless you add…

Container ingredients to mix-n-match

11/13/17 | 24Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

2. cgroups
– limit resource consumption per process

3. prctl (PR_SET_NO_NEW_PRIVS)
– prevent execve(2) from increasing privileges

4. seccomp(2)
– filter system calls

5. SELinux, AppArmor, etc.
– various features that change what a process may do

System calls: unshare(2), clone(2), setns(2)

privileged
need root to create, unless you add…

unprivileged

Container ingredients to mix-n-match

11/13/17 | 25Los Alamos National Laboratory

1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities

2. cgroups
– limit resource consumption per process

3. prctl (PR_SET_NO_NEW_PRIVS)
– prevent execve(2) from increasing privileges

4. seccomp(2)
– filter system calls

5. SELinux, AppArmor, etc.
– various features that change what a process may do

System calls: unshare(2), clone(2), setns(2)

privileged
need root to create, unless you add…

unprivileged

11/12/17 | 26Los Alamos National Laboratory

Charliecloud’s hybrid approach

11/13/17 | 27Los Alamos National Laboratory

1. Image building & sharing goes in a sandbox
– safe place for users to be root: user workstation or virtual machine
– use Docker for image building

or anything else that can produce a filesystem tree
debootstrap(8), yum --installroot, etc.

– wrap Docker for image management
ch-docker2tar

Charliecloud’s hybrid approach

11/13/17 | 28Los Alamos National Laboratory

1. Image building & sharing goes in a sandbox
– safe place for users to be root: user workstation or virtual machine
– use Docker for image building

or anything else that can produce a filesystem tree
debootstrap(8), yum --installroot, etc.

– wrap Docker for image management
ch-docker2tar

2. Run images with our own unprivileged runtime
– mount & user namespaces only

requires new-ish kernel
most distros have the right kernel (Fedora in 2015, Ubuntu Xenial in 2016)
Cray UP04 has it
RHEL/CentOS 7 can install via ElRepo (or enable on kernel command line in 7.4)

– it’s a user program!!!
– admins don’t need to do anything

Basic workflow

11/13/17 | 29Los Alamos National Laboratory

step
where

privileged?
sandbox production

1. Build Docker/etc. image ✓ maybe

2. Dump image to tarball ✓ maybe

3. Copy tarball to where you want to run ✓ ✓ no

4. Unpack tarball ✓ no

5. Configure your stuff (sometimes) ✓ no

6. Run your commands in container ✓ no

Performance e.g.: CoMD and VPIC (32 nodes)

11/13/17 | 30Los Alamos National Laboratory

0

10

20

30

40

50

60

70

80

90

100

CoMD VPIC

Bare metal Charliecloud

Pe
rc

en
t W

al
l C

lo
ck

0.7% faster 4% faster

Charliecloud vs. the design goals

11/13/17 | 31Los Alamos National Laboratory

1. Standard, reproducible workflow
– in contrast with “tinker ’til it’s ready, then freeze”
– standard ⟹ reduce training/devel costs, increase skill portability
– reproducible ⇒ creation of images is easier & more robust

2. Work well on existing resources
– HPC centers are very good at what they do
– let’s not re-implement and re-optimize

resource management: solved (Slurm, Moab, Torque, PBS, etc.)
file systems: solved (Lustre, Panasas, GPFS)
high-speed interconnect: solved (InfiniBand, OPA)

3. Be very simple
– save costs: development, debugging, security, usability
– UNIX philosophy: “make each program do one thing well”

✓

✓

✓

Charliecloud status

11/13/17 | 32Los Alamos National Laboratory

1. Available now on some LANL clusters
– passes tests on Crays
– Woodchuck (IC) now, Fog (ASC) very soon

2. Installable now on any Linux box
– newer kernel needed (roughly 4.4+)
– including cloud instances

3. Instructions for pre-installed VirtualBox image
– no root needed
– Mac, Windows, Linux, Solaris

4. Packages available on openSUSE Build Service (community)
– CentOS 7, Debian 9.0, Xubuntu 16.04 & 17.10

5. PR for HTCondor integration (community)

Charliecloud resources

11/13/17 | 33Los Alamos National Laboratory

;login: article (USENIX magazine)
– “Linux containers for fun and profit in HPC”
– https://www.usenix.org/publications/login/fall2017/priedhorsky

Supercomputing 2017
– “Charliecloud: Unprivileged containers for UDSS in HPC”

Documentation
– https://hpc.github.io/charliecloud
– includes detailed tutorials

Source code
– https://github.com/hpc/charliecloud

Reid Priedhorsky, Tim Randles / {reidpr,trandles}@lanl.gov

Charliecloud: Lightweight unprivileged containers for UDSS in HPC

